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Abstract

The relation between the bulk and shear loss factors of isotropic, homogeneous, linear solid viscoelastic materials is

investigated in this paper by means of the complex modulus concept. It is shown that the bulk and shear loss factors can be

related through the dynamic Poisson’s ratio provided that the shear loss is low enough. Bounds on the ratio of the bulk to

shear loss factor are derived, and the respective lower bounds are given as a function of the dynamic Poisson’s ratio. The

ratio of the bulk to shear loss factor is predicted to decrease with the increase of dynamic Poisson’s ratio, and it is shown

that the decrease may obey a simple power law if the Poisson’s ratio is close to either 0 or 0.5. Experimental data on solid

polymeric materials are presented which support the theoretical findings.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic elastic and loss properties of linear, solid viscoelastic materials can effectively be characterized
by the complex modulus concept [1–3]. An isotropic, homogeneous solid is known to have two fundamental
complex moduli; namely the complex bulk and shear moduli [1–3]. From knowledge of these moduli the
dynamic behaviour of the isotropic viscoelastic material can completely be described, and the velocity and
attenuation of bulk and shear waves propagating in the solid can be determined. The complex bulk and shear
moduli are fundamental ones, and hence are independent of each other, but can be related through a third
complex modulus or the complex Poisson’s ratio [3]. It is easy to show that the real parts of the complex bulk
and shear moduli, i.e., the relevant dynamic moduli, can be related through the dynamic Poisson’s ratio
provided that the shear loss is low enough [4]. The question rightly arises; what is the relation between the bulk
and shear loss properties, and whether the relevant loss factors can be related through the dynamic Poisson’s
ratio likewise the dynamic moduli.

The relations between the loss factors of isotropic linear viscoelastic materials have been investigated
theoretically, and it has been proved that the bulk loss factor is inevitably smaller than the shear one [3,5].
In addition, several experiments have been made since about 1960s up to now to clear up the relation between
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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the bulk and shear loss properties in viscoelastic solids, especially rubbers and hard plastics [2,5–10].
All experimental results support that the bulk loss factor is smaller than the shear one, but only few
works investigated quantitatively the relation between these loss factors [7,8]. Furthermore, the detailed
experimental data in one of the latter works suggest that the ratio of bulk to shear loss factors may be related
to the dynamic Poisson’s ratio [8], but neither theoretical, nor experimental works are known on studying this
relation.

The idea on the relation between the bulk and shear loss factors and the dynamic Poisson’s ratio arose in a
recent paper by the present author [11]. The aim of this work is to present the theoretical base of this idea, to
develop some relations and support them with experimental data. The essential motivation of this work is to
widen our knowledge on the dynamic properties of solid linear viscoelastic materials. The new knowledge can
be useful in both material characterization and research, moreover in the sound and vibration control, and
wave propagation studies [1,12–16].

2. Theory

2.1. The problem

Consider the relation between the complex bulk modulus, B, the complex shear modulus, G, and the
complex Poisson’s ratio, n, which can be given as [3]

BðjoÞ ¼
2

3
GðjoÞ

1þ nðjoÞ
1� 2nðjoÞ

, (1)

where the overbar denotes the complex value, j ¼
ffiffiffiffiffiffiffi

�1
p

is the imaginary unit, o ¼ 2pf ; f is the frequency in
Hz, and

BðjoÞ ¼ BdðoÞ þ jBlðoÞ ¼ BdðoÞ½1þ jZBðoÞ�, (2)

GðjoÞ ¼ GdðoÞ þ jGlðoÞ ¼ GdðoÞ½1þ jZGðoÞ�, (3)

nðjoÞ ¼ nd ðoÞ � jnlðoÞ ¼ nd ðoÞ½1� jZnðoÞ�. (4)

In Eqs. (2) and (3) the subscripts d and l refer to the dynamic and loss moduli, respectively, ZB is the bulk
loss factor and ZG is the shear loss factor. In Eq. (4) nd is the dynamic Poisson’s ratio, nl is the relevant loss
part, and Zn is referred to as Poisson’s loss factor [11]. The loss factors are defined as

ZB ¼ Bl=Bd , (5)

ZG ¼ Gl=Gd , (6)

Zn ¼ nl=nd . (7)

Starting out of Eq. (1), formally the same equation can be derived for the relation between the dynamic moduli
and Poisson’s ratio under the assumption that the shear loss factor is low enough, namely ZGo0.3, and
bearing in mind that ZG is the highest among the material loss factors [3,4]. Consequently, the ratio of the
dynamic bulk modulus to the dynamic shear modulus can be written as

Bd

Gd

�
2

3

1þ nd

1� 2nd

. (8)

This equation shows that the dynamic bulk and shear moduli are related through the dynamic Poisson’s ratio.
In addition, Eq. (8) offers a possibility to investigate the relation between Bd and Gd, since the physically
possible values of dynamic Poisson’s ratio are known from the theory of elasticity, namely:�1ondp0.5 for
isotropic, homogeneous solids. The common viscoelastic solids (rubbers, hard plastics) have positive Poisson’s
ratio, i.e., 0pndp0.5, and only these materials are in focus of this work. It can be read from Eq. (8) that the
larger nd, the larger Bd/Gd, moreover Bd/Gd-N as nd-0.5.
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Seeing the simple equation between Bd/Gd and nd, the question arises; whether the bulk and shear loss
factors can be related through the dynamic Poisson’s ratio likewise the dynamic moduli. By studying
the magnitudes of ZB and ZG at nd ¼ 0, in the vicinity of nd ¼ 0 and 0.5, respectively, it is easy to show that the
relation between the bulk and shear loss factors and the dynamic Poisson’s ratio may exist. Consider firstly the
case if n ¼ nd ¼ 0, then it is clear from Eq. (1) that B ¼ 2G=3, from which: Bd ¼ 2Gd/3 and Bl ¼ 2Gl/3, and
therefore: ZB ¼ ZG. Bearing in mind that ZBoZG for nd40 [3,5], it can be concluded that ZB/ZG should start to
decrease from unity with increasing nd. Furthermore, from knowledge of ZB/ZG ¼ (Bl/Gl)/(Bd/Gd), and Bd/Gd-
N as nd-0.5, one can predict that, in principle, ZB/ZG-0 as nd-0.5, since the loss moduli, which are
proportional to the dissipated energy, should remain finite in a real solid regardless of the magnitude of nd.
It follows that the bulk loss factor can be much lower than the shear one if nd is close to 0.5, which agrees with
the experimental observations on rubbery materials [2,6,11]. On the basis of these one can conclude that the
ratio of bulk to shear loss factor is related to the dynamic Poisson’s ratio, and ZB/ZG is expected to decrease
with increasing nd.

2.2. Bounds on ZB/ZG

The knowledge of bounds on ZB/ZG, if exists any, can be a useful tool to investigate the adequacy of a
relation found between the bulk and shear loss factors. The existence of upper bound is plausible from the
theoretical finding that the bulk loss factor is inevitably lower than the shear one [3,5]. Moreover, ZB ¼ ZG at
nd ¼ 0 as mentioned above, consequently one can write: ZB/ZGp1 for ndX0. To find the lower bounds, the
complex form of the first Lame’s constant, l, is considered, which is [3]

lðjoÞ ¼ ld þ jll ¼ B�
2

3
G. (9)

It follows from Eq. (9) that

ll ¼ Bl �
2

3
Gl . (10)

Bearing in mind that ll40 for nd40 [5], it can be concluded from Eq. (10) that

Bl

Gl

4
2

3
, (11)

which can be written as

ZB

ZG

Bd

Gd

4
2

3
. (12)

Combining Eq. (12) with Eq. (8) yields:

ZB

ZG

4
1� 2nd

1þ nd

(13)

for 0ondo0.5. Eq. (13) defines the lower bounds for the ratio of the bulk to shear loss factors, and these
bounds are functions of the dynamic Poisson’s ratio. The upper and lower bounds on ZB/ZG are shown in
Fig. 1 as a function of nd.

2.3. Relation between ZB/ZG and dynamic Poisson’s ratio

The upper and lower bounds given in Fig. 1 indicate the area where the magnitudes of ZB/ZG may occur.
In order to find the relation between ZB, ZG and nd, and to predict the variation of ZB/ZG with nd within the
bounds, the bulk loss factor is derived from Eq. (1). The separation of Eq. (1) into real and imaginary parts
and some transformations result in

ZB ¼
½ð1þ nd Þð1� 2ndÞ � 2ðndZnÞ

2
�ZG � 3ndZn

ð1þ nd Þð1� 2ndÞ � 2ðndZnÞ
2
þ 3ndZnZG

. (14)



ARTICLE IN PRESS

d 100 MHz
c MHz
b MHz

a 100 kHz

–20
0
20

40°C

20

40

60°C

a

b

c

d

1.0

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5

Upper bound

Lower
bound

�d

� B
/�

G

1

10

Fig. 1. The ratio of bulk to shear loss factor plotted against the dynamic Poisson’s ratio: J: styrene-butadiene rubber, f ¼ 100 k, 300 k,

500 k, 1M, 3M, 10M, 30M, 100MHz, 20 1C [6,11]; D: poly(methyl methacrylate), f ¼ 1Hz [9]; &: poly(4-thiacyclohexyl methacrylate),

f ¼ 800 kHz [17]; and –: fitting the data on the styrene-butadiene rubber by Eq. (19), n ¼ 2.3.
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This equation can be simplified if the shear loss factor is as low as ZGo0.3, and by considering that ZnoZG [5].
Some transformations of Eq. (14) and the neglecting of the small quantities yield:

ZB � ZG � Zn
3nd

ð1þ ndÞð1� 2nd Þ
. (15)

It is emphasized that the relatively low shear loss was the basic assumption required to derive Eq. (15). The
low shear loss, namely ZGo0.3 is characteristic of the majority if not all stiff structural materials (metals,
ceramics, etc.), hard plastics at room temperature and rubbers in the rubbery and glassy ranges. Moreover, it
has been pointed out in Ref. [11], where the rearranged form of this equation has been derived in another way,
that Eq. (15) may be accurate enough even if the shear loss is high, e.g., ZGE1.0, provided that the dynamic
Poisson’s ratio is close to 0.5, say nd40.45 (rubbers in transition range). It follows that Eq. (15) may hold true
for wide class of materials.

Eq. (15) demonstrates the relation between the bulk and shear loss factors and the dynamic Poisson’s ratio,
but involves the Poisson’s loss factor too. The latter is a peculiar loss factor, which is known to be a
complicated function of the dynamic Poisson’s ratio itself, and depends on the material loss properties
characterized by the modulus loss factors [4,11]. The dependence of Zn on nd is a further support of the
assumption that relation is between the bulk and shear loss factors and the dynamic Poisson’s ratio, but this
relation cannot be expressed explicitly from Eq. (15), unfortunately. Notwithstanding, Eq. (15) enables one to
predict some relations between ZB/ZG and nd for the cases if nd is close to either 0 (cork and some polymeric
foams) or 0.5 (rubbers). To find a relation for the first case, the Poisson’s loss factor is expressed from Eq. (15),
which can be written as

Zn � ZG

1� ZB=ZG

3nd

, (16)
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if nd-0. It is known that Zn-0 as nd-0 [11], and this behaviour can be satisfied if the numerator in Eq. (16)
obeys a power function of nd, i.e.,

ZB

ZG

¼ 1� ann
d , (17)

where a40 and n41 should stand. It is easy to show that this power law also may hold true if nd is close to 0.5.
To see it, consider again the Poisson’s loss factor, which can be written from Eq. (15) as

Zn
ZG

� 1� 2nd , (18)

seeing that ZB5ZG if ndE0.5. Moreover, it is known that ZnpZB [5], and this inequality is satisfied if ZB/ZG

obeys the equation

ZB

ZG

¼ 1� ð2ndÞ
n, (19)

where n41. Both Eqs. (17) and (19) predict the decrease of ZB/ZG with increasing the dynamic Poisson’s ratio
in agreement with the prediction made in Section 2.1. In addition, both equations satisfy the requirement on
the lower bound defined by Eq. (13).

To sum up, the loss factor ratio, ZB/ZG, can be predicted to decrease with the increase of dynamic Poisson’s
ratio and the decrease may obey a simple power law if nd is close to either 0 or 0.5. It is a reasonable
assumption that a power law may be adequate to describe the variation of the loss factor ratio in other ranges
of dynamic Poisson’s ratio as well. Nevertheless, it should be emphasized that it is not thought at all that a
power law with specified values of a and n would universally be valid for all viscoelastic materials over the
whole range of nd. In contrast, the assumption is that a power law may relate the ratio of bulk to shear loss
factors to the dynamic Poisson’s ratio over some limited intervals, and the parameters, a and n, certainly vary
from material to material.

3. Experimental evidences

Some experimental data on ZB/ZG as functions of nd are given in Fig. 1, where the lower and upper bounds
are shown too. The data are from literature, and concern a styrene-butadiene rubber (SBR) [6] and two hard
plastics (poly(methyl methacrylate) (PMMA) [9] and poly(4-thiacyclohexyl methacrylate) (P4OCHMA) [17]).
All data have been selected carefully, and are very reliable due to the accurate experimental procedures and
preparation of the data described in detail in the relevant works.

The data on the SBR fall into the main transition range of viscoelastic behaviour, which was studied over
wide frequency range. The real and imaginary parts of the complex bulk, longitudinal and shear moduli of
SBR are available from 10 kHz to 1GHz at 20 1C [6], and ZB, ZG and nd were calculated from the published
data at some frequencies as described in Ref. [11]. It should be noted that the frequency–temperature
equivalence principle was applied in the work [6] to create the SBR data covering wide frequency range. While
the frequency–temperature principle has been used intensively for a long time by a number of authors, today it
is known that this principle may lead to inaccurate data for some viscoelastic materials. The present author
studied carefully the experimental procedure and preparation of the SBR data given in Ref. [6], and had not
found any reason to query the accuracy of these data. In contrast to SBR, the data on both hard plastics fall
into the secondary transition of viscoelastic behaviour, which was investigated as a function of temperature,
and the frequency–temperature principle was not used. In case of PMMA, both ZG, ZB and nd were determined
between �40 and 100 1C at 1Hz, the data are directly available in Ref. [9] (Figs. 4 and 7). The data at �20, 0,
20 and 40 1C were selected to verify the theoretical predictions. Similarly, in case of P4OCHMA, the
magnitudes of both ZG, nd and nl measured as a function of temperature between 20 and 120 1C at 800 kHz are
available in Ref. [17] (Figs. 2 and 8). From these data the present author calculated the loss factors Zn and ZB at
20, 40 and 60 1C by means of Eqs. (7) and (15), respectively.

The experimental data seen in Fig. 1 convincingly demonstrate that relation exists between the ratio of bulk
to shear loss factor and the dynamic Poisson’s ratio. It is clear that the larger nd, the smaller ZB/ZG is. The
power law defined by Eq. (19) was fitted to the data on SBR; the result is shown in Fig. 1. The fitting with
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exponent n ¼ 2.3 is rather good not only for this rubber, but also for PMMA. The experimental data definitely
support that the simple power law may be adequate to describe the relation in question over some range of
dynamic Poisson’s ratio. Notwithstanding, it should be emphasized again, that with other materials (e.g.,
P4OCHMA), and in different ranges of Poisson’s ratio, other parameters in the power law may be required to
describe the relation between ZB/ZG and nd.

4. Conclusions

It has been shown in this paper that the bulk and shear loss factors of isotropic, homogeneous, linear solid
viscoelastic materials can be related through the dynamic Poisson’s ratio by assuming that the shear loss factor
is lower than 0.3. The ratio of the bulk to shear loss factor has been found to be a bounded quantity, and the
respective lower bounds have been given as a function of dynamic Poisson’s ratio. It has been proved that the
bulk and shear loss factors are identical if the dynamic Poisson’s ratio is 0, while the bulk loss factor can be
much smaller than the shear one if the Poisson’s ratio is close to 0.5. The ratio of bulk to shear loss factor has
been predicted to decrease by the increase of dynamic Poisson’s ratio, and it has been shown that the decrease
may obey a simple power law if the Poisson’s ratio is close to either 0 or 0.5. The experimental data on a
rubber and two hard plastics convincingly support the theoretical predictions. It is hoped that this work will
inspire further research to investigate the idea outlined in the paper for viscoelastic materials of different kind,
and in other ranges of dynamic Poisson’s ratio.
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